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Abstract. Modified trial equation method (MTEM) was used for exact solutions of (2+1)-dimensional Zakharov-

Kuznetsov (ZK) equation and Chafee-Infante equation. Three and two dimensional graphs were plotted to analyze

the physical behaviors of the solutions by using Wolfram Mathematica 9.This method is an important method

for finding travelling wave solutions of nonlinear partial differential equations (NLPDEs).
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1 Introduction

It is very substantial to find exact solutions of NLPDEs. In recent years, computer programs such
as Maple, Matlab that facilitate algebraic calculations and many methods have been used to find
the solutions of NLDEs. Several of these methods are tan− tanh(ϕ(ξ)/2)-expansion method,
tan(ϕ/2)-expansion method (Manafian, 2016; Manafian & Heidari, 2019; Ilhan et al., 2020),
Semi-Inverse Variational method (Manafian et al. (2020)), Multiple rogue-wave solution method
(Lu et al., 2020), (G’/G)-expansion method (Islam & Hasan, 2018), extented trial equation
method (Bulut et al., 2014; Demiray et al., 2015), extended sinh-cosh method (Triki& Wazwaz,
2014), sine-cosine method (Wazwaz, 2004; Bibi & Mohyud-Din, 2014), Kudryashov method
(Kudryashov, 2012; Pandir et al., 2012), exp-function method (Manafian & Lakestani, 2015;
Heris & Zamanpour, 2013), MTEM (Odabasi & Misirli, 2018; Tandogan & Bildik, 2016). In this
work, we have applied MTEM to obtain the exact solution of (2+1) dimensional ZK equation
and Chafee-Infante equation. By reducing NLPDE to nonlinear ordinary differential equation
(NLODE), an algebraic equation system was obtained by Wolfram Mathematica 9. By solving
these system, travelling wave solutions have been found. The purpose of this method is to find
the traveling wave solutions of NLPDEs. In the light of these data, it is a suitable method to
find the solutions of NLPDEs.

Firstly, MTEM is implemented to the following (2+1)-dimensional ZK equation (Khalique
& Adem, 2011),

ut + 3hu2ux + z(uxxt + uxyy) = 0, (1)

where h and z are arbitrary constants. Many methods have been submitted to find the solutions
of the Eq. (1) (Naher & Abdullah, 2012; Zhong et al., 2013; Ray, 2018; Alam et al., 2014).

Then, MTEM is applied to the following Chafee-Infante equation Habiba et al. (2019),

ut − uxx − αu(1− u2) = 0, (2)
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where α is arbitrary constant, the parameter α sets the relative equilibrium of the diffusion
term and the nonlinear term. Many authors have obtained the solutions of the Chafee-Infante
equation using different methods (Straughan, 2020; Huang & Huang, 2017; Qiang et al., 2013).

2 Modified Trial Equation Method

Step 1. Consider the NLPDE,

P (u, ut, ux, uxx, ...) = 0, (3)

wave transform as,
u = u(η), η = kx− ct, (4)

where c is a constant. Applying Eq. (4) to Eq.(3), we can observe the following NLODE,

O(t, x, u, u
′
, u

′′
, · · · ) = 0, (5)

where u
′
= du

dη .
Step 2. The first order trial equation

u
′
=

S(u)

R(u)
=

∑n
i=0 aiu

i∑l
j=0 bju

j
=

a0 + a1u+ a2u
2 + . . .+ anu

n

b0 + b1u+ b2u2 + . . .+ blul
, (6)

and

u
′′
=

S(u)
[
S

′
(u)R(u)− S(u)R

′
(u)
]

R3(u)
. (7)

Substituting Eqs. (6) and (7) into Eq.(5), we get

q(u) = χ0 + χ1u+ . . .+ χru
r = 0. (8)

Step 3. Equating the coefficients of q(u) to zero, we can obtain

χp = 0, p = 0, . . . , r. (9)

Solving the system (9), we can find the values of a0, . . . , an and b0, . . . , bl.
Step 4. Consider Eq.(6), the following integral form can be written

η − η0 =

∫
R(u)

S(u)
du. (10)

Using the complete discrimination system with the roots of S(u) , we obtain exact solutions of
Eq.(3).

3 Application to (2+1)-Dimensional ZK Equation

Getting transformation as
u = u(η) = u(x+ y − ct), (11)

Eq.(1) converts to
−cu+ hu3 + z(l − c)u

′′
= 0. (12)

By use of balance principle between u
′′
and u3 in Eq.(12), we get n = l + 2.

Case 1. For l = 0 and n = 2 then

u
′
=

a0 + a1u+ a2u
2

b0
, (13)
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u
′′
=

(a0 + a1u+ a2u
2)(a1 + 2a2u)

b20
. (14)

where a2 ̸= 0 and b0 ̸= 0 . Then, an algebraic equation system is obtained. By solving these
system, the following solutions have been found:

Case 1.1:

a0 = a0, a1 = 0, a2 = a2, b0 = ∓
√
−2za2(ha0 + a2)

h
, c = −ha0

a2
. (15)

Substituting Eq.(15) into Eq. (10), we get the following trigonometric function solution,

u(x, y, t) =

√
a0
a2

tan

[
±

√
− ha0
2z(ha0 + a2)

(
x+ y +

ha0
a2

t±
√

−2za2(ha0 + a2)

h
η0

)]
. (16)

Case 2: For l = 1 and n = 3 then

u
′
=

a0 + a1u+ a2u
2 + a3u

3

b0 + b1u
, (17)

u
′′
=

(a0 + a1u+ a2u
2 + a3u

3) (b0 + b1u) (a1 + 2a2u+ 3a3u
2)− b1(a0 + a1u+ a2u

2 + a3u
3)

(b0 + b1u)3
.

(18)
where a3 ̸= 0. Then, an algebraic equation system is obtained. By solving these system, the
following solutions have been found:

Case 2.1:

a1 =
a0b1
b0

, a2 = −ha0
2

+

√
hza20(hza

2
0 − 2b20)

2za20
,

a3 =

(
−hza20 +

√
hza20 + (hza20 − 2b20)

)
b1

2za0b0
, c =

hza20 +
√
hza20(hza

2
0 − 2b20)

b20
. (19)

Substituting Eq. (19) into Eq. (10), we have the following dark soliton solution,

u1(x, y, t) =
a0
b0

√
zµ tanh

[
1

√
zµ

(
x+ y − hza20µ

b20
t− 2b0

√
zη0

)]
, (20)

where µ = 1 +

√
1− 2b20

hza20
.

4 Application to Chafee-Infante Equation

Getting transformation as

u = u(η), η = kx− ct, (21)

Eq.(2) converts to

−cu
′ − k2u

′′
+ α(u3 − u) = 0. (22)

By use of balance principle between u
′′
and u3 in Eq. (22), we have n = l + 2.

Case 1: For l = 0 and n = 2 then

u
′
=

a0 + a1u+ a2u
2

b0
, (23)
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u
′′
=

(a0 + a1u+ a2u
2)(a1 + 2a2u)

b20
, (24)

where a2 ̸= 0 and b0 ̸= 0 . Then, an algebraic equation system is obtained. By solving these
system, the following solutions have been found:

Case 1.1:

a0 = 0, a1 = a2, c = −3αb0
2a2

, k =
αb20
2a20

. (25)

Substituting Eq. (25) into Eq. (10), we get the following exp-function solution,

u1(x, t) =
exp

(
ab0
2a2

[
x−

(
−3a2

b0

)
t
]
+ η0

)
1− exp

(
ab0
2a2

[
x−

(
−3a2

b0

)
t
]
+ η0

) . (26)

Case 1.2:

a0 = 0, a1 = −a2, c =
3αb0
2a2

, k =
αb20
2a20

. (27)

Substituting Eq.(27) into Eq.(10), we have the following exp-function solution,

u2(x, t) =
1

1− exp
(

ab0
2a2

[
x−

(
−3a2

b0

)
t
]
+ η0

) . (28)

Case 2: For l = 1 and n = 3 then

u
′
=

a0 + a1u+ a2u
2 + a3u

3

b0 + b1u
, (29)

and

u
′′
=

(a0 + a1u+ a2u
2 + a3u

3) (b0 + b1u) (a1 + 2a2u+ 3a3u
2)− b1(a0 + a1u+ a2u

2 + a3u
3)

(b0 + b1u)3
,(30)

where a3 ̸= 0. Then, an algebraic equation system is obtained. By solving these system, the
following solutions have been found:

Case 2.1:

a0 = 0, c = −3k
√
α√
2

, a1 = −a2, a3 = 2a2, b1 =
2
√
2ka2√
α

, b0 = −
√
2ka2√
α

. (31)

Substituting Eq. (31) into Eq. (10), we get the following exp-function solution

u3(x, t) =
exp

(√
α
2

(
x+ 3

√
α
2 t+

√
2
αη0

))
1− exp

(√
α
2

(
x+ 3

√
α
2 t+

√
2
αη0

)) . (32)

Case 2.2:

a0 = 0, c = ±3k
√
α√
2

, a1 = ∓a2, a3 = ±2a2, b1 = ∓2
√
2ka2√
α

, b0 =

√
2ka2√
α

. (33)
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Substituting Eq. (33) into Eq. (10), we have the following exp-function solution

u4(x, t) =
1

1− exp
(
∓
√

α
2

(
x∓ 3

√
α
2 t−

√
2
αη0

)) . (34)
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Figure 1: The 3D and 2D surfaces of real values of Eq.(16) for h = 1, a0 = 9, a2 = 3, z = −6,−25 ≤
x ≤ 25,−25 ≤ t ≤ 25 and y = 0.02, t = 0.03 for 2D.
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Figure 2: The 3D and 2D surfaces of imaginary values of Eq.(16) for h = 5, a0 = 1, a2 = 7, z =
8,−45 ≤ x ≤ 45,−75 ≤ t ≤ 75 and y = 0.5, t = 0.01 for 2D.
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Figure 3: The 3D and 2D surfaces of real values of Eq.(32) for α = 1,−45 ≤ x ≤ 25,−25 ≤ t ≤ 25
and t = 0.01 for 2D.
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Figure 4: The 3D and 2D surfaces of imaginary values of Eq.(32) for α = −1,−45 ≤ x ≤ 25,−25 ≤
t ≤ 25 and t = 0.01 for 2D.

Remark 1. The solutions of Eq.(1) were procured by using MTEM. These solutions were con-
trolled in Wolfram Mathematica 9. Also, the solutions are new.

Remark 2. The solutions of Eq.(2) were attained by using MTEM. They were checked in
Wolfram Mathematica 9. We have attained the similar solution with the solution Eq (3.5) in
Habiba et al. (2019) in this study with the solution Eq. (26). Also, other solutions of Eq.(2) are
new.

5 Conclusion

In this research, exp-function, dark soliton, trigonometric wave solutions of (2+1)-dimensional
ZK equation and Chafee-Infante equation were obtained by using the MTEM. Three and two
dimensional graphs for appropriate parameters were plotted to analyze the physical behaviors
of the solutions by using Wolfram Mathematica 9. It can be said that MTEM is an effective for
finding exact solutions of NLPDEs and it is an important method for obtaining travelling wave
solutions. Also, this is a very important method for the solving nonlinear problems.
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